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INVESTIGATION OF A GAS FLOW WITH SOLID PARTICLES

IN A SUPERSONIC NOZZLE

UDC 541.182.8V. N. Vetlutskii, V. L. Ganimedov,

and M. I. Muchnaya

A two-phase flow with high Reynolds numbers in the subsonic, transonic, and supersonic parts of
the nozzle is considered within the framework of the Prandtl model, i.e., the flow is divided into an
inviscid core and a thin boundary layer. Mutual influence of the gas and solid particles is taken
into account. The Euler equations are solved for the gas in the flow core, and the boundary-layer
equations are used in the near-wall region. The particle motion in the inviscid region is described
by the Lagrangian approach, and trajectories and temperatures of particle packets are tracked. The
behavior of particles in the boundary layer is described by the Euler equations for volume-averaged
parameters of particles. The computed particle-velocity distributions are compared with experiments
in a plane nozzle. It is noted that particles inserted in the subsonic part of the nozzle are focused
at the nozzle centerline, which leads to substantial flow deceleration in the supersonic part of the
nozzle. The effect of various boundary conditions for the flow of particles in the inviscid region is
considered. For an axisymmetric nozzle, the influence of the contour of the subsonic part of the
nozzle, the loading ratio, and the particle diameter on the particle-flow parameters in the inviscid
region and in the boundary layer is studied.

Key words: two-phase flow, viscous flow in the nozzle, numerical methods.

Introduction. Various gas-particle flows were studied in a number of papers where the gas flow was de-
scribed by the full Navier–Stokes equations, Euler equations, and boundary-layer equations. The Eulerian approach
is commonly used to study the behavior of particles, with all particle parameters being averaged over an elementary
volume. A more recent trend is to use the Lagrangian approach where the parameters of each particle or a particle
packet are computed.

The flow in the boundary layer on a flat plate with a shock wave passing along the plate was considered in
[1–3]. The gas motion was described by the equations of a compressible laminar boundary layer, and the motion
of particles was computed by the Euler equations. Velocity and temperature profiles for the gas and particles were
presented. Outa et al. [3] compared the numerical results with their own experiments conducted with glass spheres
and found that particles 50 µm in diameter are concentrated near the boundary-layer edge.

Saurel et al. [4] used the Euler equations for the gas and particles. It was shown that the equations for
particles are degenerate hyperbolic equations, and a special numerical method was proposed to solve them. Results
of computations of the flow in a curved channel with injection of particles through the side wall were presented. In
[5, 6], the gas flow was computed with the use of the full Navier–Stokes equations. The two-phase flow in a shock
tube was studied with allowance for the lifting force for particles.

An unsteady problem for a two-phase flow behind a shock wave passing through a dusty gas in a compression
corner was considered in [7]. The motion of both phases was described by the Euler equations. It was shown that
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the shock wave is decelerated to a greater extent as the dust concentration increases and that the density of particles
behind the shock wave decreases with time. Passage of a shock wave through a dusty layer of air above a flat plate
was analyzed in [8] with the use of the full Navier–Stokes equations for the gas and the Euler equations for particles.
An effect of the lifting force on the particle behavior was identified. Passage of a shock wave above a plane cavity
was considered in [9, 10]. In both papers, the flow of the gas and particles was described by the Euler equations.
The loading ratio and the particle size were found to exert a significant effect on the flow in the cavity.

In [11–15], the two-phase flow in supersonic nozzles was considered within the framework of the Euler
equations for both phases. Various algorithms were suggested for computing both monodisperse and polydisperse
flows, with a stiff system of equations for particles. Examples of computations for various configurations of nozzles
were given for loading ratios lower than unity.

Sommerfeld [16] computed the exhaustion of a sonic underexpanded gas-particle jet into an ambient space.
The gas and particles were computed by the Euler and Lagrange equations, respectively. An algorithm for computing
the case with particles of different sizes present in the flow and an algorithm that takes into account particle collisions
were proposed. Axial distributions of the gas and particle velocities and temperatures were presented.

Exhaustion of an incompressible turbulent jet was considered experimentally and theoretically in [17]. Parab-
olized Navier–Stokes equations were used to compute the gas flow, and the behavior of glass spheres was determined
by the Lagrange equations. The particle velocity in the jet was measured by the Laser Doppler Velocimetry (LDV).
It was demonstrated that particles in a two-phase flow accelerate the gas as compared to a single-phase flow.

Yanenko et al. [18] used LDV to measure the particle velocity at the centerline of the supersonic part of a
plane nozzle. The velocity of the gas without particles was measured by LDV and by a Pitot tube. Particles made
of different materials were used in experiments, the particle diameters varied almost by an order of magnitude, and
the densities of substances and the loading ratio varied by more than an order of magnitude.

In the present work, we considered a gas flow with solid particles in a supersonic nozzle. It was assumed that
the Reynolds number was sufficiently high and the boundary-layer thickness was sufficiently small for the entire
flow to be divided into an inviscid core and a thin boundary layer. In the first domain, the gas flow was described
by the Euler equations, and the motion of particles followed the Lagrange equations. Gas–particle interaction was
taken into account under the same assumptions as those used in the above-mentioned papers: there are no chemical
reactions between the gas and particles; because of a small volume concentration of particles, their trajectories
do not cross each other, and the particles do not interact with each other; all particles are solid spheres of an
identical diameter and having a constant temperature over the cross section; each particle has its own trajectory;
the Brownian motion of particles and the force of gravity are neglected; gas–particle interaction is determined by
the drag force and heat transfer only. In the second domain, we used the boundary-layer equations for the gas
and the Euler equations for the particles whose parameters were averaged over an elementary volume (the particles
were considered as a continuous medium). The gas and particle parameters computed in the inviscid domain were
imposed as conditions at the boundary-layer edge.

Inviscid Flow in the Nozzle. We consider a gas flow with solid particles in the subsonic, transonic, and
supersonic parts of a nozzle with a prescribed contour r = R(x); the nozzle-throat radius is denoted by R∗. For the
gas, the divergent form of the Euler equations in the variables ξ = x/R∗ and η = r/R(x) is [16]
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The value of the parameter ω = 1 corresponds to an axisymmetric flow, and ω = 0 refers to a plane flow; the values
ν = 1 and ν = 0 correspond to a two-phase and a single-phase flow, respectively. The following notation is used
here:
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m = ρu, n = ρv, m̃ = ξxm+ ξrn, ñ = ηxm+ ηrn,
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The parameters ρ, p, e, u, and v are the density, pressure, total energy, and velocity components in the Cartesian
(cylindrical) coordinate system x, r. The term J−1 is the Jacobian of coordinate transformation, (Fpart)x and
(Fpart)r are the components of the vector of particle-induced forces acting on the gas, and the parameter Qpart

characterizes the heat transfer between the gas and particles. All gas-dynamic parameters are normalized to critical
velocity of sound a∗ and density ρ∗.

System (1) was solved under commonly used no-slip conditions on the wall and symmetry conditions at the
centerline. In the cylindrical input part of the nozzle, the gas flow was assumed to be isentropic, parallel to the
centerline, and having a given pressure p0 and a given temperature T0 equal to the corresponding values in the
settling chamber. No boundary conditions were imposed at the exit from the supersonic part of the nozzle.

The motion of particles was described by the Lagrangian approach. For convenience of computations, the
particles were united into packets with the coordinates ξm, ηm (m = 1, 2, . . . ,M); the velocity and temperature
of particles in each packet were assumed to be identical. The following equations of motion and heat transfer in
dimensionless form were written for the packet [16]:
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The following notation was used here in addition to that described above: velocity vectors of the gas and the mth
packet of particles (U and Um, respectively) gas viscosity µ, specific heat of the gas and the particle substance (cp
and cpart, respectively), particle diameter Dpart, density of the particle substance ρpart, and Reynolds number Re
based on the critical parameters of the gas and on the nozzle-throat radius. The drag coefficient of the particles CD

and the Nusselt number for the particles Nu were determined by the relations

(CD)m =
24

Rem

(
1 +

Re2/3
m

6

)
for Rem < 1000, (CD)m = 0.44 for Rem > 1000,

Num = 2 + 0.6 Re1/2
m Pr 1/3,

where Pr is the Prandtl number for the gas and Rem = ρDpart|U − Um|Re /µ is the Reynolds number for the
particles in the mth packet.

All particles were assumed to be introduced in a certain cross section of the nozzle ξ = ξ0 uniformly over
the cross section, with a prescribed velocity and temperature. The packet coordinate within the computational cell
was determined by a generator of random numbers, and the number of particles in a packet Nm was determined by
the loading ratio ψ equal to the ratio of mass flow rates of the particles and gas.

Interaction between the particles and the nozzle wall can have different forms, depending on properties
of the particles and the inner surface of the nozzle. In the present work, we considered three variants of the
boundary conditions on the wall: 1) no-slip condition where all particles incident onto the wall were removed from
the computation; 2) condition of inelastic interaction where the particles on the wall were deprived of the normal
component of velocity; 3) condition of elastic reflection where the sign of the normal component of particle velocity
was changed to the opposite one. The condition of symmetry was imposed at the nozzle centerline, which implied
that a particle crossing the centerline and leaving the domain considered was replaced by a particle with the same
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parameters but with the transverse velocity component of the opposite sign. The boundary at the nozzle exit was
not subjected to any boundary conditions.

In the case of inelastic interaction, the particles may accumulate near the wall, and the particle concentration
at the centerline can increase owing to particle focusing. The behavior of particles in such a domain was considered
in [21] within the framework of the continuum approach; the concepts of a “sheet” and a “string” were introduced
for the solid phase. In the present work, the validity of the assumption about the absence of particle collisions with
each other was monitored on the basis of the mathematical probability of the absence of collisions P0 [16]

P0 = exp (−Nc∆t), Nc =
(2Dpart)2

Vjk

π

4

∑
m

Nm|U − Um|, (3)

where Nc is the frequency of collisions, Vjk is the volume of the difference cell, and ∆t is the time of particle
residence in this cell. Systems (1) and (2) were solved numerically on a finite-difference grid with cell numbered j

along the ξ coordinate and k along the η coordinate. Then, the components of particle-induced forces acting on the
gas and the corresponding heat flux can be written as follows [16]:
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Summation is performed over all packets located in this cell.
Equations (1) were spatially approximated on the basis of a finite-difference TVD scheme developed in

[19]. This scheme ensures the second order of approximation on smooth solutions. As this scheme employs a five-
point template over each spatial variable, one has to involve two points outside the domain boundary to perform
computations in the boundary nodes. The values of the sought functions at these points were found by extrapolation
with allowance for the boundary conditions. Soft conditions were imposed at the nozzle exit. The resultant equations
containing derivatives with respect to time were solved by a five-step Runge–Kutta method [20], which ensured the
second order of accuracy in terms of time. System (2) was integrated by the Euler method. For the right sides to
be computed, the gas-dynamic parameters were approximated by the least squares technique from their values at
the nodes of the Eulerian grid to the points with the coordinates ξm and ηm for each packet.

The entire problem was solved by means of successive approximations. With known values of particle
parameters at certain points of the domain, several time steps were made in gas-dynamic equations. Then one
step was made in Eqs. (2) with fixed values of gas parameters. After that, Eqs. (1) were solved with new values of
particle parameters, and then Eqs. (2) were solved again. This process was continued until the balance of particles
in the cross section of their insertion, at the nozzle exit, and deposited on the wall was reached with prescribed
accuracy. Stabilization of gas-dynamic parameters was also monitored.

The workability of the generated algorithm was checked by comparing the computed results with experi-
mental data [18]. A plane nozzle had a contoured subsonic part and a straight-line supersonic part with an apex
half-angle of 5.5◦. The pressure in the settling chamber was 8 bar, and the temperature was 260 K. First, the
gas-velocity distribution at the nozzle centerline in the flow without particles was computed and compared with
the experimental results. The gas velocity was measured by a Pitot tube. The difference between the computations
and experimental data was within 4%.

The next comparison was performed for the flow in the same nozzle but with particles inserted at a temper-
ature of 293 K in the cylindrical part of the nozzle with a velocity equal to the local velocity of the gas. Particles
made of different substances and of different diameters were used, as well as different loading ratios. The no-slip
condition was chosen in the computations as the boundary condition for particles on the wall. The particle velocity
was measured by LDV. The computed and experimental values of particle velocity are plotted in Fig. 1 (in this and
subsequent figures, the vertical bar at ξ = 19 indicates the nozzle throat). The best agreement with experimental
results was obtained in computations for bronze particles (the difference was within 8%), a slightly greater difference
was observed for Plexiglas (12%), and the greatest difference was obtained for lycopodium (14%). The latter can
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Fig. 1. Computed (curves) and experimental (points) velocity distributions for particles made of different
substances at the nozzle centerline: 1) lycopodium (Dpart = 25·10−6 m, ρpart = 500 kg/m3, and ψ = 0.316);
2) Plexiglas (Dpart = 200 · 10−6 m, ρpart = 1200 kg/m3, and ψ = 1.27); 3) bronze (Dpart = 80 · 10−6 m,
ρpart = 8600 kg/m3, and ψ = 4.26).
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Fig. 2. Distribution of the number of bronze-particle packets at the nozzle centerline.

Fig. 3. Distribution of gas velocity at the centerline (solid curve) and on the nozzle wall (dotted curve).

be explained by the fact that the surface of lycopodium particles can be significantly different from the spherical
shape.

All subsequent computations were performed for gas flows with bronze particles. Figures 2 and 3 show the
results computed for the flow in the same nozzle for particles of diameter Dpart = 5 · 10−6 m with a loading ratio
ψ = 1.0 for the same governing gas-dynamic parameters. It was found that particles that were not deposited onto
the nozzle wall move away from the wall upstream of the nozzle throat and turn toward the nozzle centerline,
where the particle concentration significantly increases. This phenomenon is illustrated in Fig. 2, which shows the
distribution of density of particle packets along the nozzle centerline. At ξ = 24, this quantity increases by an order
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Fig. 4. Distribution of the Mach number at the nozzle exit for different half-angles of its subsonic part.

of magnitude as compared to the neighboring cross sections. The probability of the absence of particle collisions
estimated by Eq. (3) yielded P > 0.999. Note, the probability of collisions for larger particles is even lower, because
the collision frequency Nc is proportional to the particle diameter squared.

A significant increase in particle concentration at the centerline leads to significant deceleration of the gas
flow in the supersonic part of the nozzle, which is demonstrated in Fig. 3. The flow velocity becomes supersonic
downstream of the nozzle throat, after that the gas is decelerated by particles with the velocity coefficient reaching
0.8 and then is again accelerated to a supersonic velocity. As there are no particles near the wall, the gas velocity
monotonically increases in this region.

Interaction of particles with the nozzle surface depends on their mechanical properties, shape, temperature,
and other factors. This issue was not considered in the present work, but the influence of different boundary
conditions on the wall on the gas–particle flow in the nozzle was examined. For this purpose, three variants of
computations for the previously indicated governing parameters (except for the loading ratio equal here to ψ = 0.5)
were performed: with the no-slip condition (variant I), inelastic interaction condition (variant II), and elastic
reflection condition (variant III). The computations showed that the velocity and temperature distributions of the
gas and particles in variants II and III are almost coincident. In variant I, the particle velocity in the supersonic
part of the nozzle is slightly higher and the temperature is slightly lower than the corresponding values in two other
variants. This difference is explained by the fact that, in the first variant, some particles are deposited on the wall,
and the number of particles in the supersonic part of the nozzle is smaller than in the other variants.

It turned out that the effect of the boundary conditions on the velocity and temperature distributions of
particles at the nozzle exit is more pronounced. The boundary of the particle flux in the first two variants is less
than one half of the nozzle height, whereas it reaches two thirds in the last variant. Moreover, the particle velocity
and temperature in the second variant are almost constant over a distance of approximately one third of the radius
from the nozzle centerline.

The effect of the subsonic part of the nozzle, particle diameter, and loading ratio was considered by an
example of an axisymmetric nozzle with a conical supersonic part, half-angle of 15◦, and throat radius R∗ = 0.01 m.
The pressure in the settling chamber was 20 bar, the temperature was 500 K, the particle temperature at the nozzle
entrance was 293 K, and the particle velocity was assumed to be equal to the gas velocity at the centerline in
the entrance cross section of the nozzle. The half-angle of the conical subsonic part of the nozzle varied within
θ = 30–75◦, the particle diameter was Dpart = 25–100 µm, and the loading ratio was ψ = 0.2–1.0. The condition
of inelastic interaction was imposed at the boundary. Figure 4 shows the distribution of the Mach number at the
nozzle exit for Dpart = 100 µm, ψ = 1.0, and different values of the angle θ. This parameter characterizes the
intensity of gas deceleration by particles, in other words, the particle distribution over the nozzle cross section. For
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Fig. 5. Distribution of mean density of bronze particles at the boundary-layer
edge for different half-angles of the subsonic part of the nozzle.

θ = 45◦, the particles are almost uniformly focused within one third of the radius near the nozzle centerline. For
large angles of the subsonic part, the particle-laden jet expands at the exit to two thirds of the radius; the particle
concentration near the centerline is somewhat higher. Moreover, for θ = 75◦, in contrast to other variants, the
particles are also present in the vicinity of the wall.

The dependence of the Mach number at the nozzle exit on the particle diameter for θ = 60◦, ψ = 0.2, and
Dpart = 50, 75, and 100 µm was also considered. In all three variants, the particle-laden jet occupies approximately
one half of the radius, with the particle concentration increasing toward the centerline. As it could be expected,
with decreasing particle diameter and unchanged mass flow rate, the gas–particle interaction becomes more intense,
which leads to more significant deceleration of the gas.

For subsequent computations of the gas–particle flow, the density, velocity, and temperature of particles
were averaged over an elementary volume at the boundary-layer edge. Figure 5 shows the distribution of the mean
density of particles at the boundary-layer edge for θ = 30, 45, and 75◦, ψ = 0.2, and Dpart = 100 µm. The
x coordinate is counted here from the nozzle throat. It is seen that the density in the subsonic part of the nozzle
drastically increases first and then rapidly decreases, and the particles leave the region of the boundary-layer edge.
In the supersonic part of the nozzle, the particles do not fall onto the boundary-layer edge (except for the variant
with the maximum value of the angle θ), and their density here is ρ ≈ 10. The result of gas deceleration near the
wall by these particles is demonstrated in Fig. 4.

Boundary-Layer Flow. The effects of gas viscosity and heat conduction are taken into account in the
present work in a thin boundary layer on the nozzle surface. As the flow in the supersonic part of the nozzle can
be accompanied by shock waves [22] and possible separation of the boundary layer, this problem was solved by the
pseudotransient method [23]. The equations of an unsteady compressible boundary layer for the gas–particle flow
are written in a surface-fixed coordinate system:
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The coordinates ξ and η are directed along the surface and perpendicular to it, with the corresponding velocity
components u and v; µ, k, and cp are the coefficients of viscosity, thermal conductivity, and specific heat. Michel’s
algebraic model of turbulence is used for the turbulent flow. All parameters are normalized to their critical values,
as in inviscid equations. In addition, the parameters η and v are multiplied by the square root from the Reynolds
number Re.

The Eulerian approach was used for the particle flux in the boundary layer [1–3], where the density, velocity,
and temperature of particles were averaged over the volume. The two-dimensional steady Euler equations for
particles are written in the form

∂

∂ξ
(ρpup) +

∂

∂η
(ρpvp) + ω

R′

R
ρpup = 0,

ρpup
∂up
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+ ρpvp

∂vp

∂η
= −Dy, (5)

ρpupcpart
∂Tp

∂ξ
+ ρpvpcpart

∂Tp

∂η
= −Q,

where ρp, up, vp, and Tp are the mean density, velocity components, and temperature of particles. In Eqs. (4) and
(5), we introduced the components of the force of particles acting on the gas Dx and Dy, the work of these forces Φ,
and the heat flux from the particles to the gas Q, for which we used the following expressions [2]:
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3
4

ρpρ

ρpartDpart
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3
4

ρpρ

ρpartDpart
CD(vp − v)|U − Up|,
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1

Re
(vp − v)Dy, Q = 6cp

ρpµ

ρpartD2
part

Nu
Pr Re

(Tp − T ).
(6)

Here U and Up are the velocity vectors of the gas and particles. Standard formulas are used for the drag coefficient
CD and Nusselt number Nu.

Nevertheless, it is impossible to construct the solution in the boundary layer in this formulation, because, in
the absence of particles, the convective terms for the gas and the pressure gradient gradually acquire the equilibrium
with each other when approaching the boundary-layer edge. Therefore, the velocity profile tends asymptotically
to its value at the boundary-layer edge. A similar situation is observed for the temperature distribution. In the
gas flow with solid particles, however, the parameters of the latter display a principally different behavior: they
do not tend asymptotically to certain values at the boundary-layer edge. Therefore, the gas–particle interaction
parameters (6), generally speaking, do not tend to zero at the boundary-layer edge, and their allowance in system
(4) violates the asymptotic character of gas velocity and temperature. For this reason, we decided to ignore the
action of particles on the gas in the boundary layer and to take into account only the influence of the gas on the
particles. This assumption is valid only if the particle concentration is rather low.

The gas in the vicinity of the wall is subjected to conventional no-slip and constant-temperature conditions,
and the distributions of pressure, streamwise velocity component, and temperature, which are taken from inviscid
computations of the gas–particle flow in this nozzle, are imposed on the boundary-layer edge:

η = 0: u = v = 0, T = Tw, η = ηe(ξ): p = pe(ξ), u = ue(ξ), T = Te(ξ).

A self-similar solution of the boundary layer under given conditions was constructed at the nozzle entrance.
In formulating the boundary conditions for Eqs. (5), we had to study their characteristic properties. We can

easily see that this system has the only characteristic of multiplicity equal to four with an inclination λ1,2,3,4 = up/vp,
which corresponds to the particle streamline. Yet, the matrix corresponding to this characteristic number has a
rank equal to unity; hence, only three linearly independent eigen vectors correspond to this number. Thus, system
(5) is not hyperbolic in the common sense [24]. A similar result was obtained in [13, p. 151], where relations on
characteristics were written. This system was called in [4] the degenerate hyperbolic system. Unfortunately, the
properties of such systems have not been adequately studied; therefore, the boundary-value problem was posed in a
manner corresponding to hyperbolic equations. As the flux of particles enters the nozzle through the boundary-layer
edge, all four parameters should be set there (density, two components of velocity, and temperature). In this case,
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Fig. 6. Profiles of the mean density of bronze particles in the boundary layer at
different distances from the nozzle throat.

no conditions are imposed on the nozzle wall. A similar formulation of the boundary conditions was proposed in
[25] for an incompressible boundary layer with particles:

η = ηe(ξ): ρp = ρpe(ξ), up = upe(ξ), vp = vpe(ξ), Te = Tpe(ξ).

The distributions of parameters are also taken from the computations of a particle-laden inviscid gas flow in this
nozzle. In the cross section where the particles were inserted, all their parameters were assumed to be constant over
the cross section, as in the inviscid flow.

In Eqs. (4) and (5), for convenience of computations, we introduced the Blasius variable λ = η/
√
ξ instead

of the coordinate η and performed extension for both independence variables ξ and λ, which was constant for the
first variable and solution-dependent for the second one [26]. The boundary-layer equations (4) were solved by an
implicit difference scheme [26] until they became time-independent, and the equations for the particles (5) were
solved by a through-count difference scheme. Under prescribed conditions at the boundary-layer edge, each of these
systems was solved consecutively until the entire process was stabilized.

The particle-laden boundary layer was computed for an axisymmetric nozzle described above and for the
same values of the governing parameters. In addition, the wall temperature (Tw = 293 K) and the Reynolds number
(Re = 1.52 · 106) based on the critical parameters were set. It was assumed that the flow is laminar at first and
becomes turbulent at a distance between three and four throat radii.

Figure 6 shows the profiles of the mean density of particles in the boundary layer for θ = 75◦, ψ = 1, and
Dpart = 100 µm. The numbers at the curves indicate the distance from the nozzle throat. In this variant, the
density at the boundary-layer edge reaches a maximum at x ≈ −1.0, after which these particles penetrate into
the boundary layer and move together with the viscous gas flow. As the cross-sectional area through which the
gas and particles flow in the boundary layer on the subsonic part of the nozzle decreases severalfold owing to a
decrease in the layer thickness and nozzle radius and the particle velocity changes only weakly, the mean density
becomes significantly higher in this region. The maximum of density approaches the nozzle surface and decreases
in magnitude. (Thus, all particles from the boundary layer are gradually deposited on the wall in the supersonic
part of the nozzle.)

The influence of the half-angle of the subsonic part of the nozzle on the distribution of the particle density on
the wall for θ = 45, 60, and 75◦, ψ = 0.2, and Dpart = 100 µm is plotted in Fig. 7. The density drastically increases
at first, following its increase on the boundary-layer edge with a certain delay. After that its values decrease at the
laminar portion of the supersonic part of the nozzle and then increase and reach an almost constant value. The
values of density over the entire length decrease with increasing half-angle, which is explained by a corresponding
decrease in density at the boundary-layer edge.
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Fig. 7. Distribution of the mean density of bronze particles on the nozzle wall for
different half-angles of the subsonic part of the nozzle.

A similar comparison of the particle-density curves on the wall for different loading ratios showed that they
change approximately in proportion to this factor. The dependence of the same parameter on the particle diameter
was studied for θ = 60◦ and ψ = 0.2. Its values are almost coincident in the subsonic part of the nozzle, and there
is a weak difference in the supersonic part: the maximum disagreement reaches 12%. Thus, we can conclude that
the particle size has only a weak effect on the particle density on the wall.

Conclusions. Effective algorithms have been developed for computing the gas flow with solid particles in
the inviscid flow core and in the boundary layer. The computed distributions of particle velocity at the centerline
of a plane nozzle for different types of particles are in good agreement with experimental data. It is found that
particles inserted in the subsonic part of the nozzle are accelerated by the gas and move away from the wall upstream
of the nozzle throat. Then, they cross the centerline in the supersonic part of the nozzle and pass to the other
half of the nozzle with respect to the centerline; particle focusing at the centerline is observed. An increase in
particle concentration in the supersonic part of the nozzle leads to gas deceleration to a subsonic velocity. Later,
the gas is again accelerated to a supersonic velocity. It is shown that different types of particle interaction with
the wall lead to significant differences in distributions of particle parameters at the nozzle exit and have almost no
effect on the axial distribution. It follows from the boundary-layer computations that the maximum of the particle
density can be significantly higher than the density at the boundary-layer edge because of a significant decrease in
cross-sectional area of the boundary layer in the subsonic part of the nozzle. During the motion in the supersonic
part of the nozzle, this maximum approaches the wall, simultaneously decreasing in magnitude. It is found that
the particle density on the wall depends weakly on the particle size and depends significantly on the half-angle of
the subsonic part of the nozzle and on the loading ratio.

The authors are grateful to Prof. Krause and Prof. Olivier from the Technical University (Aachen, Germany)
for their permanent attention to this work.
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